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ABSTRACT 

In this paper, a finite capacity queueing system with state dependent input parameter operating in different environments 

with catastrophes is studied. The input parameter is a function of n, the number of customers present in the system. The 

input rate increases (decreases) according as n, the number of units in the system, is less (greater) than N, a pre- assigned 

number. We undertake the transient analysis of a limited capacity queueing system with two environmental states in the 

presence of catastrophes. Transient state solution is obtained by using the technique of probability generating function. 

The steady state results of the model are obtained by using the property of Laplace transform. Finally, some particular 

cases of the queuing model are also derived and discussed. 
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1. INTRODUCTION 

The notion of catastrophe played a very important role in various areas of science and technology, in particular birth and 

death queueing models. In recent years, the attention has been focused to study the queueing systems on certain extensions 

that include the effect of catastrophes. This consists of adding to the standard assumptions the hypothesis that the number 

of customers is instantly reset to zero at certain random times. The catastrophes occur at the service- facility as a Poisson 

process with rate . Whenever a catastrophe occurs at the system, all the customers there are destroyed immediately, the 

server gets inactivated momentarily, and the server is ready for service when a new arrival occurs.  

In this connection, a special reference may be made to the paper by Crescenzo, A. Di et al. [7]. Crescenzo, A. Di 

et al. [7] proved that the M/M/1 catastrophized processes may be suitable to approach a current hot topic of great biological 

relevance, concerning the interaction between myosin heads and actin filaments that is responsible for force generation 

during muscle contraction. However, the force of contraction may rise on changing other conditions like a change in 

temperature or pH or a slight stretching of the fiber. Now, in the present paper, we have added another factor of 

environmental change, i.e. the change in the environment affects the state of the queueing system. In other words, the state 

of the queueing system is a function of environmental change factors. 
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A large number of research papers have appeared dealing with population processes under the influence of 

catastrophes (see. e.g., Bartoszynski, R. et al. [1], Brockwell, P.J. [2] and Brockwell, P.J. et al. [3]). These works are also 

concerned with various quantities of interest, such as transition probabilities, the stationary probabilities and the time to 

extinction. It is also well known that computer networks with a virus may be modeled by queueing networks with 

catastrophes [4]. Jain, N.K. and Kanethia, D.K. [9] discussed and obtained the transient analysis of a queue with 

environmental and catastrophic effects. Liu, Youxin and Liu, Liwei [17] studied the transient probabilities of an M/PH/1 

queue model with catastrophes which is regarded as a generalization of an M/M/1 queue model with catastrophes. 

The layout of this paper is as follows. In section 2, we present the assumptions and definitions of the model. The 

detailed analysis of the main model is done in section 3.  In section 4 & 5, some particular cases and the steady- state 

solution of the queueing model are also derived and discussed. Mean queue length and applications of the model are 

discussed in section 6 & 7. 

2. ASSUMPTIONS AND DEFINITIONS 

(i) The customers arrive in the system one by one in accordance with a Poisson process at a single service 

station. The arrival pattern is non- homogeneous i.e., there may exist two arrival rates, namely 0 and 1(n) [n= 0, 1, 

2, M, where M denotes the size of the waiting space], of which only one arrival rate is operative at any instant.  

(ii) The Poisson arrival rate 1(n) is assumed to depend on the number (say n) waiting in the queue, 

including the one in service in such a manner that whenever this number is equal to a fixed number (say N) we have 

some normal rate as 1 and that for number of units greater than N the rate is lower and for the number of units less 

than N it is higher than the normal rate. We therefore define,  

  
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where   is a positive number such that NM
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
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. This restriction on M is necessary to avoid a negative 

value of 1(n), the arrival intensity. When n=N or  =0, 1(n) gives the normal rate as 1. 

(iii) The customers are served one by one at the single service channel. The service times are independent 

identically exponentially distributed random variables. Further, it has been assumed that the system has service rates 

1 and 2 corresponding to arrival rates 1(n) and 0 respectively. The state of the queueing system when operating 

with arrival rate 1(n) and service rate 1 is designated as E whereas the other with arrival rate 0 and service rate 2 

is designated as F.   

(iv) The Poisson rates at which the system moves from environmental states F to E and E to F are denoted by 

  and 


 respectively.  
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(v) When the system is not empty, catastrophes occur according to a Poisson process with rate . The effect 

of each catastrophe is to make the queue instantly empty; simultaneously, the system becomes ready to accept the 

new customers.  

(vi) The queue discipline is first- come- first- served. 

(vii) The capacity of the system is limited to M. i.e., if at any instant there are M units in the queue then the 

units arriving at that instant will not be permitted to join the queue, they will be considered lost for the system. 

Define,  

Pn (t) = Joint probability that at time t the system is in state E and n units are in  the queue, including 

the one in service.   

Qn(t) = Joint probability that at time t the system is in state F and n units are in the queue, including the one 

in service.  

Rn(t) = The probability that at time t there are n units in the queue, including the one in service. Obviously, 

Rn(t) = Pn(t) + Qn(t)  

Let us reckon time t from the instant when there are zero customers in the queue and the system is in the 

environmental state E so that initially, we have  

Pn(0) = 

 

otherwise;0

0n;1

 

Qn(0) = 0 ; for all n.  

3. FORMULATION OF MODEL AND ANALYSIS (TIME DEPENDENT SOLUTION) 

The differential- difference equations governing the system are: 
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        ;tβPtQξμtQ
dt

d
MM2M


     n = M                                                             (6) 

Define, the Laplace Transform by 

L.T. [f (t)] = 

   


 
0

st sfdttfe
                                                                                                   (7) 

Now, taking the Laplace transform of equations (1)–(6) and using the initial condition, we get  
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Define, the probability generating functions by  
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where  

     sQsPsR
nnn


     

Multiplying equations (8)–(10) by the suitable powers of z, summing over all n and using equations (14)–

(16), we have.  
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Similarly, from equations (11)–(13) and using (14)–(16), we have 
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Eliminating Q(z, s) from equations (17) and (18), we have  
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Where dashes denote the differentiation of the function w. r. t. z and
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In equation (19), the co-efficient of P(z,s) can be re-written as:
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Using equation (20) in (19) and solving the equation (19), we have 
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Putting the value of P(z,s) in equation (18), and on simplification, we have  
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Adding equations (21) and (22), we have  
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where  
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Ci (z) = B (z) Li (z) + Li+6 (z) ;  i = 1, 2, 3, 4, 5, 6 

Relation (23) is a polynomial in z and exists for all values of z, including the three zeros of the denominator 
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The unknown quantities 
     sPandsQ,sP

M00 are obtained by setting the numerator equal to zero on 

substituting the three zeros z1 , z2 , z3 of the denominator (at each of which the numerator must vanish). Also the 
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After simplification, the three equations determining the unknown quantities 
)s(Pand)s(P),s(Q

M00 are:  

   














βαss

β
)z(L

βαss

αs
)z(L)z(L)s(P)z(L)s(P)z(L)s(Q)z(L 161511M14013012

    (24) 

   















βαss

β
)z(L

βαss

αs
)z(L)z(L)s(P)z(L)s(P)z(L)s(Q)z(L

262521M24023022

    (25) 

   















βαss

β
)z(L

βαss

αs
)z(L)z(L)s(P)z(L)s(P)z(L)s(Q)z(L

363531M34033032

    (26) 

We can re-write equations (24)-(26) as 
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On solving these equations, we have 
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4. STEADY STATE SOLUTION 

This can at once be obtained by using the well-known property of the Laplace transform given below: 
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 sRslimR
n

0s
n 


  and 

   
0s1

zBzB 
 

   
0s

zLzL 
  

       
0s

z
7i

Lz
1i

Lz
1

Bz
i

K 



 ;  i = 1, 2, 3, 4, 5. 

 
 
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











02

j

j
zL

zη

z
zL

dz   ; j = 2, 3, 4, 5, 6. 

(z)Lz)(1μ(z)Lzβ(z)L
228


 

(z)Lzβ(z)L
39


 

(z)Lzβ(z)L
410


 

(z)Lzβ(z)L
511


 

(z)Lzβ(z)L
612


 

 zCslim)z(K
1

0s


  

The unknown quantities Q0, P0, PM, 



M

0n
n

M

0n
n

QandP
can be evaluated as before.  

5. PARTICULAR CASES 

Case (a) Setting  =0 or n=N in equations (17) and (18), (i.e., when the arrival rate in the environmental 

state E is 1
, a constant), we have  

          0zXs,zQzXs,zPzX
321


                                                                                    (29) 

          0zXs,zQzXs,zPzX
654


                                                                                    (30) 

where 

    
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2

11
szzzX 

 

  zzX
2


 

           



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


M

0n
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1013
sPzzsPz1zsP1zzX
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  zzX
4


 

    ξαμszμzX
225


 

        



  



M

0n
n026

sQzsQ1zzX
 

From equations (29) and (30), we have.  

         
       zXzXzXzX

zXzXzXzX
s,zP

4251

5362






                                                                                    (31) 

         
       zXzXzXzX

zXzXzXzX
s,zQ

4251

6134






                                                                                    (32) 

Thus, on adding equations (31) and (32), we have  

 

                 

               

           

       
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
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

2
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45

M
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M
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z1zXzXsQzsQzXzX1z
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    (33) 

where 

     
21211
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μμz2ξβαμμλzzλzX 

 

      
21112121

2

8
μμξβμλμμαzξμαλzzX 

 

Relation (33) being a polynomial in z exists for all values of z, including the three zeros of the denominator. 

The unknown quantities 
     sPandsQ,sP

M00  can be obtained by setting the numerator equal to zero on 

substituting the three zeros, 1, 2 and 3 (say) of the denominator (at each of which the numerator must vanish).  

The remaining quantities 

 


M

0n
n

sP
and 

 


M

0n
n

sQ
are obtained by setting z=1, in equations (31) and (32) 

respectively, thus we have 

   
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M
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M
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and  

     
s

1
sQsPsR

M

0n
n

M

0n
n

M

0n
n

 
  

Case (b) Now letting , 0 and setting 1= 2=  (say) in relation (33), we have  

         
  μξμλszzλ

z/sξzsPzλz1sRμz1
sz,R

1

2

1

M

1M

10








                                            (34) 

where 

     sQsPsR
000


 

    sz,Rlimlimsz,R
α0β 


 

Relation (34) is a polynomial in z and therefore exists for all values of z, including the two zeros of the 

denominator. Hence, the unknown quantities 
   sPandsR

M0  can be evaluated as before.  

Steady State Solution: 

Case (a) Relation (33), on applying the theory of Laplace transforms gives the steady state form 

 

    
          

           
         

   
21211121

112121

2
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3

22111

2

1

M22

1M

10221
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2

1112

z
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zzz/z

Pzzz1zPzzz1

Qzzzz1

zR















    (35) 

where  

   s,zRslimzR
0s


 

We can re- write equation (35) as  

         
 zK

zMPzLPzNQzT
zR M00




                                                                                    (36) 

Where T(z), N(z) and L(z) are the co-efficient of Q0, P0 and PM respectively in the numerator of equation 

(35) and K(z) is the denominator of equation (35).  

Equation (36) is a polynomial in z and exists for all values of z, including three zeros of the denominator. 

The unknown quantities Q0, P0 and PM are obtained by setting the numerator equal to zero on substituting the three 

zeros b1, b2 and b3 (say) of the denominator (at each of which the numerator must vanish).  

The three equations determining the unknown quantities Q0, P0 and PM are: 

       
1M10101

bMPbLPbNQbT 
                                                                       (37) 
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       
2M20202

bMPbLPbNQbT 
                                                                       (38) 

       
3M30303

bMPbLPbNQbT 
                                                                       (39) 

After solving these equations, we have  
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0
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where 
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     

333

222

111

bLbNbT

bLbNbT

bLbNbT

A

Aij is the co-factor of the (i, j)th element of A.By putting the values of Q0, 

P0 and PM in equation (36), we have 

 

                 
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
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


                    (40) 

6. MEAN QUEUE LENGTH 

Define, Lq= Expected number of customers in the queue including the one in service. Then  Lq = 
 

1z
zR




  

Therefore, from equation (40), we have  
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    (41) 

where dashes denotes the first derivative with respect to z. 

Case (b) Relation (34), on applying the theory of Laplace transforms gives the steady state form 

     
  






1

2

1

M

1M

10

zz

zPzz1Rz1
zR

                                                                       (42) 
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where  

   s,zRslimzR
0s


 

Equation (42) being a polynomial in z exists for all values of z, including the two zeros of the denominator. 

Hence, the unknown quantities R0 and PM are obtained by setting the numerator equal to zero on substituting the 

two zeros a1 and a2 (say) of the denominator (at each of which the numerator must vanish). 

Two equations determining the constants R0 and PM are: 

   
1M

1M

11101
aPaa1Ra1  

                                                                                    (43) 

   
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21202
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                                                                                    (44) 

On solving these equations, we have  
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 ; 

where  
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211
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Now, from equation (42), we have 
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                                                         (45) 
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                                            (46) 

If 
0

 (i.e., no catastrophe is allowed), then from relation (42), we have  

 
zλμ

PzλRμ
zR

1

M

1M

10








            (47) 

The condition, 
  1zRlim

1z


  gives 

1M10
λμPλRμ 

                                                                                                               (48) 
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As R(z) is analytic, the numerator and denominator of equation (47) must vanish simultaneously for z= /1, 

which is a zero of its denominator. Equating the numerator of equation (47) to zero for z= /1 we have  

M

M

0
PR 

                                                                                                                             (49) 

Relation (48) and (49) gives 
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ρρ1
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






 

Now, from equation (47), we have  
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




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
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




 z1

z1
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1

1
zR

1M

1M

                                                                                                  (50) 

Which is a well known result of the M/M/1 queue with finite waiting space M.  

When there is an infinite waiting space, the corresponding expression for R(z) is obtained by letting M tends 

to infinity in equation (50), If Max (, |z|) 1. 

 
z1

1
zR





                                                                                                                                         (51) 

Which is again a well known result of the M/M/1 queue with infinite waiting space.  

7. APPLICATIONS OF THE MODEL 

1. In nature, there are many creatures such as cockroaches, ants, mosquitoes etc whose   movement is restricted 

with the change of temperature (environment). As the temperature drops below a critical temperature say T0, 

the movement (production) of such like creatures becomes almost zero. On the other hand, as the 

temperature goes higher than T0 the movement becomes normal. The catastrophes may occur with these 

creatures in both the environmental states i.e., spray etc which make them zero instantaneously. Then the 

number of such like creatures present in any area can be estimated by using the described queueing model 

with environmental change and catastrophes.  

2. In agriculture, if a crop is infected with a particular species of insects due to change in temperature 

(environment), we may use some chemical agents or compounds to treat such type of insects. The number of 

bacteria that destroys the crop, in large part, relies on the effectiveness and amount of the chemical reagents 

used. In other words, the use of the chemical reagents can wipe out the whole of the insects or a part of it. 

The effect of these chemical reagents on bacteria which make them zero instantaneously can be regarded as 

the occurrence of a catastrophe.  
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8. CONCLUSIONS 

In the present paper, we have established a queueing system with catastrophe, state dependent input parameter and 

environmental change. We have also obtained some interesting particular cases with (without) catastrophe and steady 

state results in detail.   
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